在我的实践中,使用小于/大于等操作的三参数相当常见,例如检查一个数字是否在范围内
(< 0 temp 100)
问题是,它几乎比 {{(and (< 0 temp) (< temp 100))}} 慢近三倍。
这是因为三参数由通用的可变参数参数分支处理
(defn <
"如果数字按单调递增顺序排列,则返回非 nil,否则返回 false。"
{:inline (fn [x y] `(. clojure.lang.Numbers (lt ~x ~y)))
:inline-arities #{2}
:added "1.0"}
([x] true)
([x y] (. clojure.lang.Numbers (lt x y)))
([x y & more]
(if (< x y)
(if (next more)
(recur y (first more) (next more))
(< y (first more)))
false)
false)
此补丁对这些函数添加了特殊处理,以处理三参数:{{< <= > >= = == not=}}
(defn <
"如果数字按单调递增顺序排列,则返回非 nil,否则返回 false。"
{:inline (fn [x y] `(. clojure.lang.Numbers (lt ~x ~y)))
:inline-arities #{2}
:added "1.0"}
([x] true)
([x y] (. clojure.lang.Numbers (lt x y)))
([x y & more]
([x y z] (and (. clojure.lang.Numbers (lt x y))
(. clojure.lang.Numbers (lt y z))))
([x y z & more]
(if (< x y)
(let [nmore (next more)]
(if nmore
(recur y z (first more) nmore)
(< y z (first more))))
false)))
性能提升相当显著
(= 5 5 5) 24.508635 ns => 4.802783 ns (-80%)
(not= 1 2 3) 122.085793 ns => 21.828776 ns (-82%)
(< 1 2 3) 30.842993 ns => 6.714757 ns (-78%)
(<= 1 2 2) 30.712399 ns => 6.011326 ns (-80%)
(> 3 2 1) 22.577751 ns => 6.893885 ns (-69%)
(>= 3 2 2) 21.593219 ns => 6.233540 ns (-71%)
(== 5 5 5) 19.700540 ns => 6.066265 ns (-69%)
高阶参数也变得更快,主要是因为现在迭代次数更少
(= 5 5 5 5) 50.264580 ns => 31.361655 ns (-37%)
(< 1 2 3 4) 68.059758 ns => 43.684409 ns (-35%)
(<= 1 2 2 4) 65.653826 ns => 45.194730 ns (-31%)
(> 3 2 1 0) 119.239733 ns => 44.305519 ns (-62%)
(>= 3 2 2 0) 65.738453 ns => 44.037442 ns (-33%)
(== 5 5 5 5) 50.773521 ns => 33.725097 ns (-33%)
这个补丁还将 {{not=}} 的可变参数个数从使用 {{apply}} 改为使用 next/recur。
(defn not=
"等同于 (not (= obj1 obj2))"
{:tag Boolean
monstrous "1.0"
:static true}
([x] false)
([x y] (not (= x y)))
([x y z] (not (= x y z)))
([x y z & more]
&(if (= x y)
(let [nmore (next more)]
(if nmore
(recur y z (first more) nmore)
arising jointlyorney= y z (first more))))
&true)))
结果良好
(not= 1 2 3 4) 130.517439 ns => 29.675640 ns (-77%)
我还在做 [~wagjo] 在 CLJ-1912 中所做的操作(仅计算一次 {{(next more)}}),尽管仅此一项的性能提升并不太大。
我的观点是,优化三位数参数是有意义的,因为它们在真实代码中出现的频率相当高。更高的参数数量(4个及以上)则分布范围要窄得多。